On the geometric densities of random closed sets
نویسندگان
چکیده
In many applications it is of great importance to handle evolution equations about random closed sets of different (even though integer) Hausdorff dimensions, including local information about initial conditions and growth parameters. Following a standard approach in geometric measure theory such sets may be described in terms of suitable measures. For a random closed set of lower dimension with respect to the environment space, the relevant measures induced by its realizations are singular with respect to the Lebesgue measure, and so their usual Radon-Nikodym derivatives are zero almost everywhere. In this paper we suggest to cope with these difficulties by introducing random generalized densities (distributions) á la Dirac-Schwarz, for both the deterministic case and the stochastic case. In this last one we analyze mean generalized densities, and relate them to densities of the expected values of the relevant measures. Many models of interest in material science and in biomedicine are based on time dependent random closed sets, as the ones describing the evolution of (possibly space and time inhomogeneous) growth processes; in such a situation, the Delta formalism provides a natural framework for deriving evolution equations for mean densities at all (integer) Hausdorff dimensions, in terms of the local relevant kinetic parameters of birth and growth. In this context connections with the concepts of hazard function, and spherical contact function are offered.
منابع مشابه
On the approximation of geometric densities of random closed sets
Many real phenomena may be modelled as random closed sets in Rd, of different Hausdorff dimensions. The authors have recently revisited the concept of mean geometric densities of random closed sets Θn with Hausdorff dimension n ≤ d with respect to the standard Lebesgue measure on Rd, in terms of expected values of a suitable class of linear functionals (Delta functions à la Dirac). In many real...
متن کاملOn the approximation of mean densities of random closed sets
Many real phenomena may be modeled as random closed sets in R, of different Hausdorff dimensions. In many real applications such as fiber processes, n-facets of random tessellations of dimension n ≤ d in spaces of dimension d ≥ 1, several problems are related to the estimation of such mean densities. In order to face such problems in the general setting of spatially inhomogeneous processes, we ...
متن کاملOn Regular Generalized $delta$-closed Sets in Topological Spaces
In this paper a new class of sets called regular generalized $delta$-closed set (briefly rg$delta$-closed set)is introduced and its properties are studied. Several examples are provided to illustrate the behaviour of these new class of sets.
متن کاملPropagation Models and Fitting Them for the Boolean Random Sets
In order to study the relationship between random Boolean sets and some explanatory variables, this paper introduces a Propagation model. This model can be applied when corresponding Poisson process of the Boolean model is related to explanatory variables and the random grains are not affected by these variables. An approximation for the likelihood is used to find pseudo-maximum likelihood esti...
متن کاملThe symmetric monoidal closed category of cpo $M$-sets
In this paper, we show that the category of directed complete posets with bottom elements (cpos) endowed with an action of a monoid $M$ on them forms a monoidal category. It is also proved that this category is symmetric closed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006